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Abstract 

 

Fatty liver associated with metabolic dysfunction is common, affects a quarter of the 

population, and has no approved drug therapy. While pharmacotherapies are in development, 

response rates appear modest. The heterogeneous pathogenesis of metabolic fatty liver 

diseases and inaccuracies in terminology and definitions necessitate a reappraisal of 

nomenclature to inform clinical trial design and drug development. A group of experts sought 

to integrate current understanding of patient heterogeneity captured under the acronym 

nonalcoholic fatty liver disease (NAFLD) and provide suggestions on terminology that more 

accurately reflects pathogenesis and can help in patient stratification for management. 

Experts reached consensus that NAFLD does not reflect current knowledge and metabolic 

(dysfunction) associated fatty liver disease “MAFLD” was suggested as a more appropriate 

overarching term. This opens the door for efforts from the research community to update the 

nomenclature and sub-phenotype the disease in order to accelerate the translational path to 

new treatments.  

  



5 
 

Introduction 

Why it is time to revise the fatty liver nomenclature? 

Since the term non-alcoholic fatty liver disease (NAFLD) was coined by Ludwig and 

colleagues in 1980 to describe fatty liver disease arising in the absence of significant alcohol 

intake 1, the nomenclature and criteria for a diagnosis has not been revisited. Yet, this disease 

has risen in prevalence, with a major impact on clinical and economic burden to society, such 

that nearly 1 billion people globally are affected2. Of concern, NAFLD is increasingly 

recognised and diagnosed in children and adolescents3, and this, when paired with the 

intimately associated hepatic as well as cardiovascular and oncological sequlae4, 5, places an 

enormous burden on individuals, families and health�care systems6. The estimated annual 

medical costs directly attributable to NAFLD exceeds €35 billion in four large European 

countries (The United Kingdom, France, Germany and Italy) and $100 billion in the United 

States7. While reducing disease burden through prevention seems obvious, this have not been 

achieved. Further, while pharmacotherapies are expected to become available in the near 

future, none to date has been approved. Thus far, several phase 2b and phase 3 studies either 

have fallen short of meeting current required histologic endpoints, or have done so with a 

modest margin. Muted efficacy of various compounds in development are in part a reflection 

of the imprecise definitions and the lack of precision medicine including consideration of 

heterogeneity of the disease.  

Despite these alarming data, the nomenclature of the disease and the criteria for diagnosis 

have not been updated to reflect our expanding knowledge. The heterogeneity of the 

population with NAFLD with respect to its primary drivers and co-existing disease modifiers, 

represent an important impediment to the discovery of highly effective drug treatments. The 

phenotypic manifestation of fatty liver diseases likely reflects the sum of the dynamic and 
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complex systems level interactions of these drivers; it follows that effective treatment 

requires that they be targeted with precision, based on a person’s phenotype and genetic 

background8, 9. However, trial recruitment is currently based on histologic grading and 

staging – and that is a problem because many pathways lead to the same histologic 

phenotype, without dissection of the predominant pathogenic pathways 10, 11. Perhaps not 

surprisingly, the response rates to current investigational agents range from 20 to 40% with a 

difference from placebo of 10-20% 8. Thus, a “one size fits all approach” would seem 

inappropriate when dealing with a very heterogeneous liver disease.  

From the patient’s perspective, the term ‘non-alcoholic fatty liver disease’ not only trivialises 

the problem by including terms such as ‘non’, but is also pejorative as it introduces words 

such as ‘alcoholic’ potentially placing the blame on the patient as having caused their 

condition. It also implies that the treatment must entirely lie in the patient’s hand. This has 

enormous implications on how industry and policy makers choose to allocate resources for 

tackling the syndrome, which clearly is a major cause of death. Lessons can be learnt from 

cardiologists, diabetologists, neurologists and oncologists who have successfully distanced 

the disease they are trying to treat from the underlying obesity, smoking, alcohol abuse and 

drug abuse. Some of these factors have high genetic predisposition. In support of this idea, a 

meeting organised by the European Liver Patient’s Association (ELPA) with the European 

Commission in 2018 suggested that a change in nomenclature was one of their key 

requirements. 

As a first step to tackle this challenge, revising the nomenclature and definitions of the 

disease is critical. Recently, concerns over the inaccuracies of the nomenclature of fatty liver 

disease have been raised by individual experts 12-14. In prior work, we called for a consensus 

to consider these aspects 15 and in this review, an international panel sought to integrate 

epidemiological knowledge about disease progression that includes steatosis and 
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steatohepatitis associated with metabolic dysfunction, with information about risk prediction 

derived from genetic and phenotyping studies. We suggest a new nomenclature based on 

consensus voting by participants to describe the disease that will allow us to properly sub-

phenotype and stratify patients, via the application of more precise genetic, anthropometric 

and metabolic phenotyping approaches. In turn, detailed phenotyping will translate into 

individualised risk prediction and prevention strategies, and improvements in clinical trial 

design.  

Methods 

Following discussions, an initial concept sheet was circulated to the panel of contributors. 

This revealed widespread agreement and consensus that it was time to revisit the 

nomenclature of metabolic fatty liver disease as a critical initial step for improved patient 

sub-phenotyping, clinical trials design and ultimately, for personalisation of medicine. 

Subsequently, a manuscript was drafted, circulated to the panel, and feedback incorporated 

over several rounds of revision. To reach consensus on a nomenclature, the Delphi method 

was adopted in two rounds. This method is a recommended iterative process for use in the 

healthcare setting as a reliable means to solicit and distil the judgments of experts and to 

determine consensus via a systematic progression of repeated rounds of voting16.  A “closed” 

electronic survey URL was sent to participants providing a unique link that could only be 

used once. Survey data were collected and managed using REDCap (Research Electronic 

Data Capture).  In the first round of surveys members suggested one or more terms to 

describe metabolic fatty liver disease. In a second round (based on a summary of the experts’ 

suggestions), participants were asked to vote on the suggested terminology. To ensure a 

robust and transparent process, anonymity of the participants was maintained.  

Metabolic associated fatty liver disease: a heterogeneous phenotype 



8 
 

We now recognise that metabolic fatty liver disease is a phenotype with complex and 

disparate causes; the current terminology (NAFLD) represents an umbrella term for the 

multiple underlying sub-types 17, 18. This is evidenced by the wide spectrum of disease 

severity and natural history, as well as the substantial inter-patient variability across the 

spectrum. Although hepatic steatosis is highly prevalent, only a minority exhibit 

inflammatory injury at any time; more importantly, an individual can oscillate between 

steatosis and steatohepatitis even over a short timeframe 19. In addition, while there is 

convincing evidence that liver-related complications (i.e., cirrhosis and cancer) are more 

likely in those with steatohepatitis, progression is far from inevitable19-21. Further, there is 

growing evidence that hepatocellular carcinoma (HCC) can develop in a fatty liver in the 

absence of cirrhosis22. Even among those with steatohepatitis, there appear to be individuals 

with apparent rapid-fibrosis progression and those with inherently slow-fibrosis progression 

23. Finally, disease evolution can be modified by exogenous interventions (for instance, life-

style changes)24, superimposed disease states (e.g., type 2 diabetes mellitus)25, inherited 

predisposition26, and can even “spontaneously” regress, as has been demonstrated in placebo 

group participants in treatment trials and by observational dual-biopsy studies in 

secondary/tertiary care settings 23, 27, 28. Adding to the complexity, it is unknown if the 

propensity for metabolic fatty liver diseases progression can vary across the lifespan. For 

example, given the rapidly escalating prevalence of metabolic fatty liver disease in children 

and young adolescents, we still do not understand if their natural history follows a different 

trajectory from those who develop disease in adulthood, middle age or even old age 29. 

Sources of heterogeneity 

The heterogeneity in clinical presentation and disease course of fatty liver disease is likely 

influenced by multiple factors including age, gender, hormonal status, ethnicity, diet, alcohol 

intake, smoking, genetic predisposition, the microbiota and metabolic status. Thus, the final 
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outcome will reflect the balance of these diverse inputs, each interacting with the other and 

modifying the ultimate manifestations and clinical course (Figure 1). It follows that effective 

treatment will require systematic dissection of the pathways involved and likely multifaceted 

and personalised treatments30, 31. A brief summary of current knowledge about factors 

contributing to NAFLD heterogeneity is provided below. 

Age and gender 

NAFLD prevalence, the risk of hepatic and extra-hepatic complications, and the likelihood of 

overall and disease-specific mortality increases with advancing age 19, 21, 32, 33.  With ageing, 

substantial changes occur in the liver including a decline in hepatic blood flow, hepatic 

volume, and liver function, a reduction in bile acid synthesis and alterations in cholesterol 

metabolism, as well as a reduction in mitochondrial number with subsequent increases in 

oxidative respiration34. Cellular senescence has also been implicated35, 36.  Furthermore, 

ageing is accompanied by changes in body composition, including a decrease in muscle mass, 

an increase in abdominal adiposity and ectopic fat deposition, with increases in insulin 

resistance and prevalence of the metabolic syndrome37, 38. Emerging evidence suggests that 

sarcopenia is associated with both NAFLD and NAFLD-related advanced fibrosis, even after 

adjusting for BMI and insulin-resistance39, 40. Presumably, ageing also captures greater 

exposure to the drivers, which result in steatohepatitis and fibrosis. 

Equally, as recently reviewed 41, there is substantial sexual dimorphism in many aspects of 

fatty liver disease with regard to risk factors, prevalence, fibrosis pattern, and disease 

outcomes. Generally, prevalence tends to be lower in women predominantly at earlier disease 

stages, whereas, disease frequency increases in postmenopausal women 41. Similarly, fatty 

liver prevalence is lower in post-menarchal girls than in boys42. Among postmenopausal 

women, those not on hormone replacement therapy (HRT) tend to have higher disease 
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prevalence compared to those on HRT43, and similarly, premenopausal women have less 

severe hepatic fibrosis and better survival compared to men and postmenopausal women44, 45. 

Consistently, a longer duration of estrogen deficiency associates with a higher likelihood of 

fibrosis among postmenopausal women with fatty liver disease 46. By analogy, studies of diet 

induced mouse models suggests that males develop more severe steatosis and liver histology 

compared to females 47, 48. 

Although the mechanisms for these effects are not completely understood, sex differences in 

adiposity, metabolic risk factors and body fat distribution (which tends to shift towards 

abdominal obesity after menopause), likely play a role 49. A recent study in mice from ~ 100 

strains included in the hybrid mouse diversity panel (HMDP) demonstrated that multiple 

molecular pathways and gene networks implicated in lipid metabolism, insulin-signalling and 

inflammation show sexual dimorphism50. Similarly, another study demonstrated sexual 

differences in liver gene expression of regulators of multiple metabolic pathways using a 

mice computational model. Notably, some such as peroxisome proliferator-activated receptor 

PPARα, farnesoid X receptor (FXR) and liver X receptor (LXR), which are highly gender 

dependent, are currently being investigated as therapeutic targets for steatohepatitis 51. A 

further study demonstrated gender-related pathways contribute to steatosis and fibrosis in 

male and female mice (males mainly inflammation and females mainly alterations of redox 

state), despite similar endpoints52. Clearly, sex and menopausal status influence disease 

outcomes and require stratification as treatment responses can vary substantially. 

Ethnicity  

Population-based data show ethnic differences in the prevalence of fatty liver; a recent meta-

analysis demonstrated both NAFLD prevalence and risk of NASH were highest in Hispanics, 

intermediate in Whites, and lowest in Blacks. However, fibrosis risk did not differ according 
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to ethnicity 53. Metabolic fatty liver disease is also rapidly increasing in Asian populations 54. 

Previous studies have demonstrated that Asians tend to accumulate liver fat at lower body 

mass index (BMI) compared to those of other races55. The course of disease also appears to 

be more severe in Asians compared to non-Asians, and they tend to have more lobular 

inflammation and higher grades of ballooning compared to other ethnicities 56’57. While data 

regarding fibrosis are scarce in the studies above, Asians tended to have a higher risk of 

fibrosis, while Africans were at lower risk compared to whites; this did not reach 

significance, perhaps due to sample size limitations 56, 57. However, and notably, these 

biopsy-based studies might suffer from selection bias. For example, a community-based 

study in Hong Kong suggested that while NAFLD is detected in a quarter of the population, 

the prevalence of advanced fibrosis is low58. 

The reasons for racial disparities in fatty liver risk are not completely understood. Plausible 

explanations include variations in genetic predisposition, metabolic attributes, cultural and 

socioeconomic factors, dietary and exercise habits, access to health care as well as 

environmental risks. There are substantial differences in genetic heritage across ethnic 

groups; variation in the risk allele of the Patatin-like phospholipase domain-containing 

protein 3 (PNPLA3) gene that is most frequent in Hispanics (49%), followed by non-Hispanic 

white (23%) and African Americans (17%) has helped, at least partially, to explain some of 

this ethnic variability59-61. In addition, the risk allele of the PNPLA3 rs738409 polymorphism 

was found to be more common in East Asians than Caucasians 62. Notably, because the effect 

size of fatty liver-related gene variants supports the existence of differences among races, the 

relative contribution of specific genetic and and environmental triggers (e.g. dietary factors) 

or modifying risk variants, toward disease pathogenesis is likely variable among ethnic 

groups (Figure 2).  
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On the other hand, there are marked racial/ethnic socioeconomic disparities that are likely 

also reflected in differences in multiple disease risk factors. For example, there is a clear 

difference between European and Asian populations with regard to insulin resistance and 

body fat distribution, as discussed later. There are also disparities in physical activity; in 

2016, a report including 1·9 million participants across 168 countries suggested that women 

in Latin America, south Asia, and high-income Western countries have the highest 

prevalence of physical inactivity63. Likewise, data from the NASH Clinical Research 

Network (NASH CRN) reported less physical activity, increased carbohydrate consumption 

and lower income levels in Hispanics compared with non-Hispanic white patients with 

NASH 64. A role for gut microbiota could also be implicated, as discussed below. 

Light and moderate alcohol use 

Since its first description, metabolic has been considered distinct from alcoholic associated 

liver disease based on a cut-off of daily alcohol intake of 30 g daily for men and 20 g daily 

for women. The assumption underlying the cut off has been that alcohol intake below these 

thresholds does not induce hepatic steatosis or have deleterious impacts on liver disease 

progression and outcomes 65 . 

Due to the high prevalence of adults with NAFLD who drink at least in moderation (~ 4 

drinks/week)66, there is now much interest in the influence of light and moderate alcohol use 

on the prognosis of NAFLD, with debate on the protective effects 67, 68 and perceived harms 

69, 70. More recently, there has been evidence for and against safe limits for alcohol 

consumption in the setting of NAFLD 71. Some reports suggest that modest alcohol 

consumption, even after adjustment for previous heavy drinking, is associated with a 

reduction in vascular complications67, 72 or has no impact73. Other studies have demonstrated 

that moderate drinking (2 drinks a day for women and 3 drinks a day for men) is associated 
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with a reduced prevalence of NASH and advanced fibrosis74. In contrast some studies 

highlight that even low alcohol intake in those with a fatty liver is associated not only with 

increased risk of disease progression, but also for advanced liver disease and cancer 75, 76,77, 78 

and decreased rates of improvement in steatosis and NASH 79. The effect of alcohol use on 

liver disease evolution likely has a dose-response, rather than a J-shaped association80, 81, with 

a synergistic detrimental effect with the presence of metabolic syndrome 75, 77 as has recently 

been reviewed 74.  

Dietary intake, gut microbiota and bile acids 

For metabolic homeostasis, the neuroendocrine axis, dietary intake, muscle mass, physical 

activity, and the enterohepatic circulation, gut microbiota, bile acids and their related 

metabolites are intimately implicated in fatty liver pathogenesis (Supplementary Figure 1). 

The dietary pattern that characterizes the Western diet, including increased fat and fructose 

consumption that is fuelling the increase in obesity and fatty liver, is associated with a wide 

range of metabolic dysfunction, including insulin resistance and abnormal lipid profile82. In 

contrast, adoption of a Mediterranean dietary pattern is accompanied with a decrease in liver 

fat in patients with NAFLD and a decrease in cardiovascular risk83, 84.  

Microbiota composition can change rapidly and widely according to dietary patterns83, 85 and 

the involvement of the gut microbiome in fatty liver and steatohepatitis in both mice and 

humans is well recognised 86, 87. Emerging data suggest that the microbiome and gut 

microbiome-derived metabolites can predict advanced fibrosis and cirrhosis in NAFLD 88-91. 

Gut microbiota are also implicated in regulating bile acids and their metabolites, which in 

turn regulates glucose, lipid and choline metabolism, and energy homeostasis 92. Altered gut 

flora and intestinal permeability have also been shown in patients and murine models of 

NAFLD 93, 94. This leads to increased circulating levels of bacterial products including 

lipopolysaccharide (LPS) as well as other bioactive compounds that may induce intra-hepatic 



14 
 

activation of proinflammatory cells, hepatic stellate cells and hepatocytes via stimulation of 

toll-like receptors (TLRs; particularly 2, 4 and 9), a sensor for these products 95-97. However, 

it remains challenging to disentangle the effects of diet and its associated consequences for 

liver disease, from effects mediated by diet-induced alterations to the microbiome, and to 

ascertain causality under these same conditions. Notably, a role for human genetic variation 

and ethnicity in driving differences in microbiomes has recently been suggested 98-100 101.  

Obesity and metabolic health 

Although obesity intimately associates with liver fat, not all patients with obesity develop 

metabolic fatty liver disease2. Whereas obesity can be classified as metabolically healthy 

obesity (MHO) and metabolically unhealthy obesity (MUO), with the former affecting about 

45% of obese subjects, there is no consensus on a definition of metabolic health. Various 

definitions of metabolic syndrome include a combination of different metabolic components 

102, 103. Similarly, while insulin resistance is believed to play a pivotal role and is a 

pathophysiological feature of fatty liver104 it has not been included in several definitions of 

metabolic syndrome. Notably, multiple large-scale cohort studies do not clearly support the 

notion that metabolically healthy obesity subgroups, at least as currently defined, are 

protected from cardiometabolic complications compared with those with a stable normal 

weight who are metabolically healthy 105-107. Better classification based on molecular or 

genetic profiling could help dissect with high precision, metabolically favourable and 

unfavourable subtypes, with distinct metabolism, anthropometry and patterns of fat 

deposition, and likely differential responses to drug treatments 108. On the other hand, ~ 30% 

of normal�weight individuals can be classified as metabolically obese normal weight 

(MONW) and they demonstrate an increased propensity for cardiometabolic risk; a fair 

proportion of patients with a fatty liver are also lean. 
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Current consensus suggests that the distribution and the overall health of fat, rather than its 

amount is likely the major determinant of disease risk. For example, higher amounts of 

visceral relative to peripheral and subcutaneous adipose tissue is associated with greater 

metabolic risk 109, 110 and is directly linked to liver inflammation and fibrosis, independent of 

insulin resistance and hepatic steatosis 109. Sex, sex hormones (as discussed above), ethnicity 

and genes obviously play important roles in determining the location and health of adipose 

tissue. There is for example, strong evidence that ethnicity is implicated in determining fat 

distribution and health 111. Thus, abdominal and visceral adiposity are greater among Asians 

compared with Caucasians, and lower in Africans 112-115 as is insulin resistance despite an 

equal or lower BMI 116 117, 118. Genetic variants also play a role in the regulation of fat 

distribution 119, 120,121, with “favourable adiposity” genes have been recently identified 103, 122, 

123.  

Although lipid accumulation in liver is a hallmark of NAFLD, there is emerging evidence 

that there is likely a variety of underlying mechanisms and routes for its development. For 

instance, a recent study has demonstrated that lipid composition in liver is very different in 

two proposed sub-types of NAFLD. In sub-type 1 based on insulin resistance, patients tend to 

have monounsaturated TAGs and free fatty acids enriched with ceramides in liver, while sub-

type 2 based on carrying the PNPLA3 risk genotype at rs738409, have polyunsaturated 

triacylglycerols (TAG)124. Similarly, another study suggested the existence of three NAFLD 

subtypes, with different metabolic phenotypes 125. In another study, regions with steatosis 

demonstrated distinct lipid composition, predominantly in the form of a loss of arachidonic 

acid-containing intracellular phospholipids, compared to non-steatosis liver tissue126. A 

further report used RNAseq analysis identified molecular subtypes with distinct gene 

expression pattern clusters that are implicated in lipid metabolism, interferon signalling and 

immune system pathways, according to different histological scores127. In total, these new 
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datasets emphasize that there are likely multiple NAFLD subtypes characterized by unique 

metabolomic signatures. Based on subtype, it is likely that treatment responses will vary and 

hence defining the metabolic landscape of an individual is likely important in clinical trial 

design. 
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Lean NAFLD 

Currently, lean NAFLD, or NAFLD in lean individuals, is defined as hepatic steatosis with a 

BMI <25 kg/m2 (or <23 kg/m2 in Asians) in the absence of ‘significant’ alcohol intake.128 

Though first described in Asian populations, it is recognised that between 5% and 45% of 

patients with NAFLD are lean; even among Europeans, about 20% of patients are considered 

lean 129
.  Although those with lean NAFLD have a better metabolic and histological profile 

compared to their counterpart obese subjects, their natural history is poorly defined, with 

some data suggesting they may have a worse outcome and accelerated disease progression130, 

131, while others suggest no difference or even better outcomes 132, 133. More recent data 

proposes that lean NAFLD comprises a distinct pathophysiological entity from that in obese 

subjects, which extends beyond just simple differences in BMI. In that study, lean patients 

had distinct metabolic and gut microbiota profiles compared to their obese counterparts and 

lean healthy controls. Specifically, they had intact metabolic adaptation in response to an 

obesogenic environment via increased bile acids and FXR activity that likely helped them to 

maintain an obesity-resistant phenotype. Notably, either this adaptation tends to be lost with 

advancement of disease or the failure to adapt promotes disease progression. Other intriguing 

aspects from a subset of the patients suggests that they have a distinct gut microbiota profile, 

with enrichment of species implicated in the generation of liver fat, and a genetic profile with 

an increased prevalence of the TM6SF2 risk allele134, as also observed by another study135. 

Further studies will be required to explore whether the metabolic adaptation observed in lean 

NAFLD is seen in other subtypes of patients.   

Familial Risk 

Data from well-characterized cohorts of twins who underwent imaging to quantify liver fat 

and fibrosis has shown that both are heritable traits136. Furthermore, retrospective family-

based studies show that there is familial aggregation of NAFLD and cirrhosis137. 
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Consistently, a recent prospective study including probands with NAFLD-cirrhosis and their 

first-degree relatives indicated that the risk of advanced fibrosis among first-degree relatives 

of patients with cirrhosis is 18%138. This is substantially higher than the risk of cirrhosis in 

the general population and points towards further sub-stratification of the population by 

family history of cirrhosis due to NAFLD. 

Genetic variation 

Genome-wide association and large candidate studies have identified multiple loci associated 

with NAFLD and NASH. While in depth discussion is beyond our scope, the topic has 

recently been reviewed 139, 140. At least five common variants in different genes have been 

associated with NAFLD, namely PNPLA3, transmembrane 6 superfamily member 2 

(TM6SF2), glucokinase regulator (GCKR), MBOAT7, and hydroxysteroid 17-beta 

dehydrogenase-13 (HSD17B13)140. Multiple other genes have reported associations, 

including polymorphisms in inflammatory, immune and metabolism-related, oxidative stress, 

adipokine, and myokine-related genes139-144. It is noteworthy however that all known variants 

explain only a small proportion of NAFLD, suggesting the existence of heritability factors 

that are yet to be defined 145. Exploring the role of other types of genetic variation, gene-gene 

and gene-environment interactions, epigenetics, common variants that do not reach genome-

wide significance, and rare and less common variants will help dissect the missing 

heritability146
’
140, 147. For example, a gene-environment interaction has been proposed for the 

PNPLA3 variant with dietary patterns 148, increased intake of sugars 149, omega-6 poly-

unsaturated fatty acids intake 150, obesity, and insulin resistance 151.   

Of interest, described NAFLD-related variants show divergent metabolic effects. Multiple 

reports indicate an association of a genetic variant of TM6SF2 (encoding p.Glu167Lys) with 

lower serum lipid levels and lower risk of coronary artery disease, but with increased risk of 
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fatty liver and advanced fibrosis 152-154, even in those with viral hepatitis155. Although early 

reports suggested that PNPLA3 rs738409 has no association with the metabolic profile156, 

more recent larger studies and a Phenome-wide association study (PheWAS) study indicate 

that it has similar metabolic effects to TM6SF2 rs58542926 157,158. An association of PNPLA3 

rs738409 and TM6SF2 rs58542926 with type 2 diabetes has also been demonstrated beside 

the known association of GCKR rs1260326 with diabetes 159. Variants in HSD17B13 and 

MBOAT7 do not to date appear to have an effect on serum lipids, glycaemia or risk of 

coronary heart disease 160-163.  

Epigenetic factors  

Reversible epigenetic changes represent a plausible bridge between genes and the 

environment; their dysregulation is implicated in several diseases, including NAFLD 140. 

Numerous microRNAs (miRNAs) have been linked to NAFLD. A recent meta-analysis 

demonstrated that in particular, miRNA-122, miRNA-34a and miRNA-192 could be 

biomarkers of fatty liver disease 164, 165. miRNA-122 and miRNA-192 showed upregulation in 

NAFLD compared to healthy controls while miRNA-34a was upregulated in NAFLD and 

correlated with disease severity164, 165.   

Data on the role of long non-coding RNAs (lncRNAs) and other type of non-coding RNAs in 

NAFLD is limited. Some data suggests alterations in lncRNAs in NASH, such as a hepatic-

specific lnc18q22.2 166, a brown fat-enriched lncRNA 1 (Blnc1), 167 and metastasis-associated 

lung adenocarcinoma transcript 1 (MALAT1)168. A study using genome scanning with next 

generation sequencing has identified other candidates169.  The role of lncRNAs in 

steatohepatitis remains to be further elucidated in larger cohorts.  

Several studies show wide alterations in the methylation signature of hepatic as well as 

peripheral blood-derived DNA, including regulatory loci for key metabolic, inflammatory, 
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and fibrotic pathways, in patients with NAFLD. Some of these signatures appear to reverse 

following bariatric surgery 170, 171,172.  There is also evidence that DNA methylation can be a 

biomarker for fibrosis stratification in NAFLD 173 and that it regulates the expression of 

PNPLA3 174. For example, hypermethylation of the PPARγ promoter can be used to identify 

patients with advanced fibrosis173. More recently, a series of studies have shown evidence of 

methylation of the key mitochondrial urea cycle enzymes carbamoyl phosphate synthase-1 

and ornithine transcarbamylase enzymes resulting in a reduction in their function and 

hyperammonemia in NAFLD patients175. Hyperammonemia activates stellate cells and is 

associated with progression of fibrosis in NAFLD176, 177; treatment of hyperammonemia using 

ornithine phenylacetate prevented progression of fibrosis in an animal model, suggesting a 

potential novel metabolic therapeutic strategy178. 

Importantly, epigenetic mechanisms play a crucial role in foetal metabolic programming of 

liver fat 179, 180, with growing evidence that the earliest origins of NAFLD extend to in utero 

experiences. Data from animals suggest that a maternal diet high in fat triggers widespread 

epigenetic alterations in foetal hepatic DNA, accompanied by metabolic maladaptation that 

favours an increase in the risk of developing NAFLD in the offspring181, 182. Even paternal 

diet patterns and prediabetes increase the risk of diabetes in offspring 183. Notably, these 

changes can be transmitted over generations, but can also be altered by exercise and lifestyle 

interventions 184-186.  Although data in humans are still limited, maternal obesity and patterns 

of infant nutrition are risk factors for the development of NAFLD in adolescence and 

adulthood. For instance, normal pre-gestational BMI and breast-feeding for more than 6 

months reduces the risk of developing NAFLD in the mother during mid-life 187 and during 

adolescence in offspring 188. Similarly, an increase in methylation of the peroxisome 

proliferator-activated receptor γ coactivator 1 (PGC1) gene that controls several aspects of 
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energy metabolism in liver 189 and in newborns, is correlated with increased maternal pre-

gestational BMI 190. 

Why do we need to consider NAFLD heterogeneity in clinical practice? 

Impact on the performance of non-invasive assessment of fibrosis   

Non-invasive fibrosis scores are commonly used to identify or exclude significant or 

advanced fibrosis in patients with fatty liver disease. However, a recent study suggested that 

the performance of scores such as the NAFLD fibrosis score (NFS) and fibrosis 4 (FIB-4) 

may vary across the life span, with lower specificity among older adults and lower accuracy 

in young adults191. The performance of non-invasive scores and the used Transient 

Elastography liver stiffness cut offs in different ethnic populations and in special 

subpopulations such as diabetic and obese individuals also need to be considered. For 

example, it has been shown that blood biomarkers are less accurate in South Asians 

compared to Europeans, regardless of metabolic indices 192. As it is likely that blood-based 

biomarkers  or imaging techniques will supplant liver biopsy for the diagnosis of disease in 

patients who would benefit from drug treatment, equally it implies that any future marker 

should be validated in more precisely defined cohorts. Thus, the consensus group suggests 

that the factors that shape the heterogeneity of NAFLD be considered when devising and 

applying risk-stratification scores and algorithms. This approach will continue to evolve as 

new contributors to disease variability are identified. 

Impact on the development of clinically-relevant animal models  

The complexity of human NASH is paralleled by the heterogeneity of animal models and the 

inability of these models to replicate the gamut of disease 193. This represents both a barrier to 

the development of novel therapeutics but also an opportunity to better understand 

steatohepatitis pathogenesis based on different drivers of disease. Considering that NAFLD 
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as described today is not a single entity, exploring the overlapping features of preclinical 

models with subtypes of NAFLD may help in overcoming these challenges. For instance, it 

has been reported that the Methionine adenosyltransferase 1A (Mat1a) deficient mouse can 

recapitulate a subtype of human NAFLD 125, while mice fed a high cholesterol or 

methionine/choline deficient diet seem to recapitulate several features of lean NAFLD194. 

Despite the range of available models, there remains a need to develop improved in vitro and 

in vivo model systems. 

Impact on clinical trials design and the ability to find treatments  

The growing magnitude of NAFLD and the lack of effective drug treatments is reflected in 

intense clinical trial activity that has jumped from just eight in 2013 to over 300 ongoing in 

2018195. Unfortunately, response rates remains modest, with <20-30% of participants 

demonstrating NASH resolution and fibrosis regression. This low response can be attributed 

to many factors, including heterogeneity in population selection, lack of stratification based 

on the underlying dominant driver mechanisms, and the Hawthorne (placebo) effect 8. 

Therefore, the standard clinical trial design that does not take into consideration disease 

heterogeneity may not be the best option for studying a complex disease. Thus, future clinical 

trials will likely target patients with specific characteristics (sex, hormonal status, genetic 

predisposition, metabolic and microbiota signatures and the presence or absence of comorbid 

conditions) once the relationships between the characteristics and the treatment targets are 

understood. Such trial design will likely include rational combination approaches 31. 

Considering alternative innovative trial designs might be a viable option (Figure 3). 

Recently, using overarching or master protocols designed to address multiple questions by 

investigating different drugs (more than one or two therapies that might even include direct 

comparisons of competing drugs) in different conditions (more than one patient type or 
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disease), all within the same overall trial structure has been suggested 196. Adaptive trial 

designs that provide flexibility for altering one or more aspects of the basic features of the 

study design based on responses in earlier phases is also an option197, although this will add 

substantial complexity to data interpretation.  Notably, given the heterogeneity of NAFLD 

according to ethnicity and geographic region, regional stratification or performing separate 

trials in different geographic regions should be considered for key trials.  

Is NAFLD the right name for metabolic liver disease?  

How do the above considerations influence our thinking on the need to revise the definition 

and nomenclature for NAFLD? It is clearly the time to do this. The suggestion of this 

consensus focusses on four aspects.  

First, NAFLD was described as a condition of “exclusion”, which means that it exists only 

when other conditions such as viral hepatitis B and C, autoimmune diseases or alcohol intake 

above a particular threshold are absent. However, with advancements in our understanding of 

the underlying pathological processes, it is clearly a disease that must be defined by 

inclusion, rather than by exclusion. Further, given its high prevalence in most affluent 

populations, especially those consuming a westernized diet, fatty liver disease is recognized 

to coexist with other conditions such as viral hepatitis, autoimmune diseases and alcohol198-

200 and will have synergistic effects on disease progression 201, 202. The nomenclature for fatty 

liver disease and criteria for diagnosis need to reflect this new knowledge.   

Second, there remains debate about the safe limit of alcohol intake. Updating a diagnosis of 

NAFLD to zero or near to zero alcohol consumption as has been suggested by some is clearly 

impractical, as recently discussed15. Furthermore, there are significant methodological 

challenges in questionnaires used for measuring alcohol consumption including documenting 

prior and over life use, low amounts of intake, patient underreporting and recall bias, as well 
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as marked variability in defining terms such as “social drinking” and “binging” in individuals 

with NAFLD. Thus, linking metabolic fatty liver disease, a distinct entity, to alcohol in its 

name is problematic. Moreover, including the term “non-alcoholic” in the name is 

disappointing for abstemious patients and links this entity to the stigma of alcohol 

consumption. Confounding terms in the name of these diseases should be replaced as has 

already been done with primary biliary cirrhosis becoming primary biliary cholangitis, with 

sometimes redundant but more accurate and clear words, defining the entity203. More 

importantly, there is an urgent need to identify coexisting metabolic and alcohol liver disease 

so that they may be treated appropriately. This group of patients is distinct from those with 

pure or predominant alcoholic cirrhosis. Such patients are currently excluded from all NASH 

trials.  

Third, though in clinical practice we segregate patients into those with NASH and those 

without, whether this is appropriate is a matter of debate. As we know, there is tremendous 

plasticity in metabolic liver disease over the life span and strong evidence that fibrosis is the 

major determinant of adverse outcomes21. Hence, the current classification may be 

misleading and perhaps metabolic dysfunction associated fatty liver disease should be 

considered similar to other chronic liver diseases with some degree of activity and a stage of 

fibrosis, without dichotomous stratification into NASH and non-NASH. From a pathological 

perspective, this will result in improved disease classification, at least in the context of liver 

biopsy26.   

Fourth, the heterogeneous nature of fatty liver diseases suggests that they cannot be 

considered or managed as a single condition with a “one size fits all” approach to therapy. 

Lack of consideration of heterogeneity impacts and detracts from our ability to precisely 

define the natural history of fatty liver phenotypes, to appropriately select for clinical trials 

that are weighted to demonstrate meaningful benefits, and to compare or pool results from the 
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trials. For these reasons, an updated and appropriate nomenclature for the disease is the first 

step in the long path to deconvolution of disease heterogeneity.    

Based on the above, participants agreed on the need for a revised and updated terminology; 

the bulk of respondents in the first round of survey suggested that the words metabolism, fat 

and liver  be included in some form in the name. The final vote favouring Metabolic 

Associated Fatty Liver ± Disease (MAFL/MAFLD) (supported by 72.4% of participants). 

The second preference Metabolic Fatty Liver +/- Disease (MEFL/MEFLD) was supported by 

17.2% (Supplementary table 1). Thus, the panel suggests we eliminate the term “NAFLD” 

from the lexicon and replace it with metabolic associated fatty liver “MAFLD”. The term 

MAFLD represents the overarching umbrella of the common disease we treat and will have 

multiple sub-phenotypes, reflecting the dominant driver of disease. Obviously, many, if not 

most, patients will have overlapping contributions from other and distinct liver diseases that 

range from alcohol (regardless the amount) to viral hepatitis. The natural history of these 

latter groups is likely very different from those with pure metabolic dysfunction. 

 

Conclusion  

The outdated NAFLD/NASH acronyms, the criteria for diagnosis and a lack of adequate 

consideration of heterogeneity in risk profiles and treatment responsiveness represent barriers 

that hamper progress towards effective treatments. The consensus group has suggested an 

acronym (MAFLD) that we believe more accurately reflects current knowledge of fatty liver 

diseases associated with metabolic dysfunction that should replace NAFLD/NASH. In 

addition, we have identified gaps in current knowledge and highlight new strategies and tools 

to overcome the challenges (Supplementary table 2). A summary of suggestions is provided 

in Table 1.  The group acknowledges the many investigators in the field who have made 
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similar well-reasoned pleas for a change in nomenclature. This work also opens up for wider 

consultation with the public, patients, regulators and non-hepatology health care workers, the 

necessity for a nomenclature update. Future studies will allow us to further characterise and 

sub-phenotype the disease and its drivers as a necessary prerequisite for the design of more 

appropriate clinical trials and for patient management and to consider the implications of the 

updated of nomenclature on clinical practice and public health policy  (Figure 4). 
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Figures legends 

Figure 1: Heterogeneity of metabolic associated fatty liver disease. The heterogeneity in 

clinical presentation and course of fatty liver disease is influenced by a multitude of factors 

including age, sex, ethnicity, alcohol intake, dietary habits, hormonal status, genetic 

predisposition and epigenetic factors, the microbiota and metabolic status. It is likely that 

there is a differential impact in the contribution of the various factors in any individual over 

time and among individuals that then shapes disease phenotype and course.  

Figure 2: Inter-individual variation in the predomi nant drivers of metabolic associated 

fatty liver disease. Metabolic associated fatty liver disease is a complex phenotype shaped 

by the dynamic interaction of genetic predisposition with environmental factors and 

components of the metabolic syndrome. The effect size of genetic variants and the 

predominant drivers can exhibit marked inter-individual variation. As an example, disease in 

patient 1 is driven predominantly by environmental influences with less contribution from 

genetic predisposition; in patient 2, metabolic syndrome is the predominant driver, while 

disease in patient 3 is driven by genetic factors with a limited contribution from other factors. 

Identification of the predominant drivers in every patient can help in personalisation of 

medicine.  

Figure 3: Innovative clinical trials for metabolic associated fatty liver disease. The 

substantial heterogeneity of patients with metabolic associated fatty liver disease and the 

limited responses to investigational targets in current clinical trials imply that innovative trial 

designs are required. Trial designs such as umbrella, basket and adaptive designs have been 

suggested to overcome the challenges. However, such designs add complexity to the trial 

analysis. 
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Figure 4: Implications of the proposed update to the metabolic associated fatty liver 

disease nomenclature. The growing burden of metabolic associated fatty liver disease in the 

absence of effective therapies requires an updated process map to address the challenges. The 

first step is an update of nomenclature, as without precise terminology, neither patient care 

nor science can be adequately served. This update of nomenclature we expect will be a step 

towards further characterisation of disease heterogeneity. In turn, detailed phenotyping can 

guide the development of better preclinical models and identify novel therapies that are likely 

to be effective for particular patient subtypes, but not others. This will lead to improved 

clinical trial designs, allowing us to compare and pool results and thereby help reduce the 

impact of disease burden.  

Supplementary Figure 1: Conceptual framework of metabolic dysfunction and 

pathogenesis of metabolic associated fatty liver disease. For metabolic homeostasis, the 

neuroendocrine axes elicits multiple and complex responses that orchestrate with caloric 

intake, muscle mass and physical activity as well as with the enterohepatic circulation, 

including gut microbiota, bile acids and their metabolites. These circles are interconnected at 

various levels. For example adiponectin signaling from adipose tissue to liver, the liver (FGF 

21) to the central nervous system, the duodenum (Cholecystokinin) to the brain, etc. These 

various inputs are integrated in the liver. Dysfunctional homeostatic responses at any of 

multiple levels are implicated in the heterogeneous pathogenesis of metabolic associated fatty 

liver disease. 
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Table 1: Statements of the consensus panel 

 

 

Nomenclature and definition of metabolic associated fatty liver disease (MAFLD) 

• We suggest that the nomenclature of NAFLD should be updated to MAFLD. 

• The diagnosis of MAFLD should be based on the presence of metabolic dysfunction not 

the absence of other conditions 

• MAFLD can co-exist with other liver diseases 

• A reference to alcohol should not be included in the MAFLD acronym. 

• Patients with both MAFLD and a contribution from alcohol to their liver disease represent 

a large and important group that requires further investigation and characterisation.  

 

MAFLD heterogeneity  

• MAFLD is a heterogeneous entity 

•  Appropriate patient stratification must be considered when non-invasive fibrosis scores are 

developed and in clinical trial design 

• Studies are required to map the landscape of MAFLD and to precisely define subtypes of 

the disease 

Clinical trials for  MAFLD  

• Detailed patient stratification and tailoring clinical trial inclusion criteria based on drivers 

of disease will likely yield more informative and meaningful results 

• Innovative designs for clinical trials and personalised combination therapy approaches will 

likely be required to overcome the challenges of disease heterogeneity and for optimal 

clinical efficacy. 
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Supplementary table 1: Results of voting on updating the nomeclature of fatty liver 
disease 

 

1. Metabolic Associated Fatty Liver ± Disease (MAFL/MAFLD) (supported by 72.4% 
of participants).  

2. Metabolic Fatty Liver +/- Disease (MEFL/MEFLD) (supported by 17.2%).  
3. Other suggestions (supported by 10.4%) 

   



Supplementary Table 2: Research gaps and future directions 

 

MAFLD diagnosis and classification: 
1) Define diagnostic criteria for MAFLD 
2) Define criteria for diagnosing MAFLD in the context of a second liver disease, e.g., the 

level of alcohol consumption used to distinguish MAFLD from dual MAFLD and alcohol 
associated liver disease. 

3) Should MAFLD be classified on the basis of disease activity and stage rather than as a 
dichotomous state based on steatohepatitis and non-steatohepatitis MAFLD.  

Deconvolution of MAFLD heterogeneity 
Research to define MAFLD subtypes.  
 
Implications of the update on nomenclature  
Implications of this update on clinical practice, the International Classification of Diseases (ICD) 
systems and Disease Related Groups (DRG), and public health policy.   


